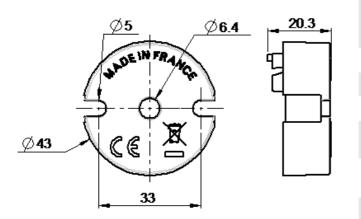


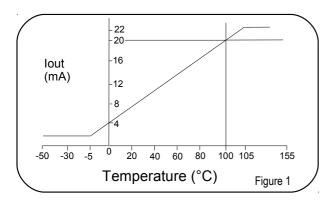
Technical Data Sheet

Pressure / Temperature / Humidity / Air Velocity / Airflow / Sound level


Pt100 temperature converter CO-LC

DESCRIPTION

The **CO-LC** converter is a converter of Pt100 temperature in a **4-20 mA** electric signal adjustable for Pt100 temperature sensors. It enables to convert the temperature variations measured by a standard Pt100 sensor (**100** Ω **at 0** °C) for a measuring range in linear signal of a 2-wire current in the **4-20 mA** domain.


The converter is protected against the polarity inversion and has been designed to be placed in a **DIN B** probe head.

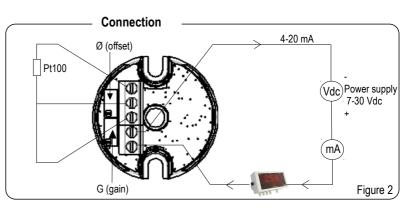
DIMENSIONS (in mm)

OUTPUT CURRENT ACCORDING TO TEMPERATURE

(in a 0 to +100 °C domain)

CONVERTER FEATURES

(at 20 °C and for a 24 Vdc supply voltage)


• Input	
Sensor	Pt100 (100 Ω at 0 °C)
Element mounting	2 or 3 wires
Linearization	EN60751, IEC 751
Current in the sensor	<1 mA
Measuring range	From -50 to +100 °C
Range by default	From 0 to +100 °C
Other available ranges	From 0 to 50 °C From -20 to 80 °C From -50 to 50 °C
Minimal measuring range	50 °C
Connection wires influence	Negligible with coupled wires
Accuracies	±0.2 °C ±0.2% of reading
Sensitivity to the ambient temperature variations	0.01 °C/°C
Sensitivity to the supply voltage variations	0.005% FS / Vdc (FS : full scale)
Storage temperature	From -40 to +80 °C
Operating temperature	From 0 to +50 °C

Output

Output	4-20 mA
Resolution	2 μΑ
Supply voltage	7-30 VDC (protection against polarity inverions)
Output burden	$R_{Lmax} = \frac{Vdc - 7}{0,022}$
	=>R $_{\text{Lmax}}$ = 825 Ω at Vdc = 24 Vdc

CONNECTION

The **figure 2** shows the connection diagram of the converter in the current loop. In order to obtain a better accuracy, use 3 wires with the same diameter to make the connection to the Pt100 probe to ensures the same impedance in each connection. A device can be introduced in the current loop like a display unit, a controller or a datalogger.

ADJUSMENT

It is possible to set a different measuring range by using the following accessories:

- Continuous 24 Vdc power supply source
- $^{(1)}$ Very precise ammeter with aminimal range from 0 to 20 mA.
- 2 Pt100 calibrator

(3)

Procedure:

• Connect the converter to configure to the source of the power supply, to the ammeter and to the Pt100 (see figure 2).

a - Configuration of T1 point

Generate the corresponding resistance to the T1 temperature (For example: for 0 °C simulate 100 Ω). With the help of the potentiometer \emptyset (offset), adjust the current output of the transmitter to obtain 4 mA.

b - Configuration of T2 point

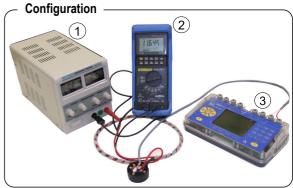
Generate the corresponding resistance to the T2 temperature (For example: for 100 °C simulate 138,51 Ω or 100 °C on the Pt100 calibrator). With the help of the G potentiometer (gain), adjust the current output of the transmitter to obtain 20 mA.

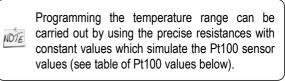
c – Check the adjustment

Redo the a and b points until you obtain the 4 mA and 20 mA signals for the T1 and T2 setpoints.

fao

9001


A modification of the gain or the offset can influence the adjustment.


PT100 VALUES IN OHMS ACCORDING TO THE MEASURED TEMPERATURE (FOR REFERENCE ONLY)

Temp °C	PT100 value
-200	18,52
-150	39,72
-100	60,26
-50	80,31
0	100,00
50	119,40
100	138,51
150	175,86

EXPORT DEPARTMENT Tel : + 33. 1. 60. 06. 69. 25 - Fax : + 33. 1. 60. 06. 69. 29 e-mail : export@kimo.fr Distributed by :

